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Taurine-mediated gene transcription 
and cell membrane permeability reinforced 
co-production of bioethanol and Monascus 
azaphilone pigments for a newly isolated 
Monascus purpureus
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Abstract 

Background Taurine, a semi-essential micronutrient, could be utilized as a sulfur source for some bacteria; however, 
little is known about its effect on the accumulation of fermentation products. Here, it investigated the effect of taurine 
on co-production of bioethanol and Monascus azaphilone pigments (MonAzPs) for a fungus.

Results A newly isolated fungus of 98.92% identity with Monascus purpureus co-produced 23.43 g/L bioethanol 
and 66.12, 78.01 and 62.37 U/mL red, yellow and orange MonAzPs for 3 d in synthetic medium (SM). Taurine enhanced 
bioethanol titer, ethanol productivity and ethanol yield at the maximum by 1.56, 1.58 and 1.60 times than those 
of the control in corn stover hydrolysates (CSH), and red, yellow and orange MonAzPs were raised by 1.24, 1.26 
and 1.29 times, respectively. Taurine was consumed extremely small quantities for M. purpureus and its promotional 
effect was not universal for the other two biorefinery fermenting strains. Taurine intensified the gene transcription 
of glycolysis (glucokinase, phosphoglycerate mutase, enolase and alcohol dehydrogenase) and MonAzPs biosynthesis 
(serine hydrolases, C-11-ketoreductase, FAD-dependent monooxygenase, 4-O-acyltransferase, deacetylase, NAD(P)
H-dependent oxidoredutase, FAD-dependent oxidoredutase, enoyl reductase and fatty acid synthase) through de 
novo RNA-Seq assays. Furthermore, taurine improved cell membrane permeability through changing cell membrane 
structure by microscopic imaging assays.

Conclusions Taurine reinforced co-production of bioethanol and MonAzPs by increasing gene transcription level 
and cell membrane permeability for M. purpureus. This work would offer an innovative, efficient and taurine-based co-
production system for mass accumulation of the value-added biofuels and biochemicals from lignocellulosic biomass.
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Background
For the desirable characteristics of ideal octane value 
and combustion efficiency, bioethanol is regarded as one 
of the most promising alternatives to the conventional 
transport fuels in the future [1]. The use of bioethanol 
as transport fuel will really reduce the buildup of car-
bon dioxide. Nearly approaching carbon neutral, ligno-
cellulosic biomass available in massive quantities can 
be widely used to produce bioethanol [2]. Therefore, 
an increasing focus is on the acquirement of the robust 
strains to augment bioethanol production in biorefinery 
fields [3]. The classic producers such as Saccharomyces 
cerevisiae and Zymomonas mobilis are used for bioetha-
nol fermentation with pure sugar and various lignocel-
lulosic biomass [4, 5]. However, little was known on 
bioethanol production of Monascus purpureus.

The filamentous fungus M. purpureus, known for red 
yeast rice fermentation [6] and wine starters of brewage 
industry [7], has been widely used as edible pigments [8], 
polysaccharides [9] and medicinal agents [10]. Monas-
cus pigments, more precisely, Monascus azaphilone 
pigments (MonAzPs), are a kind of complex compound 
mixtures including red (rubropunctamine and monas-
corubramine), orange (rubropunctatin and monascoru-
brin) and yellow (monascin and ankaflavin) pigments 
shared the common skeleton of azaphilone [11]. Mon-
AzPs are widely used as food colorants [12], pharmaceu-
tical [13] and textile dyeing industries [14]. Therefore, a 
lot of efforts including fermentation process optimization 
[15] and the operation of genetic engineering [9], meta-
bolic engineering [16, 17] and systems biology [18], have 
been made to improve MonAzPs productivity. Biomass 
substrates are also used to produce MonAzPs from M. 
purpureus [19]. Exogenous amino acids, such as S-aden-
osylmethionine (SAM), histidine and methionine, are 
increasingly standing out for their advantages of time 
saving, low cost and simple operation to facilitate Mon-
AzPs biosynthesis [20, 21]. However, little was known for 
co-production of bioethanol and MonAzPs from CSH for 
M. purpureus treated with taurine.

Taurine (2-aminoethanesulfonic acid), the main end-
product of cysteine metabolism in eukaryotes, can be 
synthesized through metabolic engineering and chemi-
cal synthesis [22]. As a semi-essential micro-nutrient, 
taurine was always biologically and physiologically used 
in food, energy drinks and medicine [22–24]. Although 
used as a sulfur source for fermenting bacteria [25], the 
effect of taurine on product accumulation of M. pur-
pureus is unknown.

Co-production systems were considered to be an ideal 
biorefinery strategy [26]. Here, it firstly investigated co-
production ability of bioethanol and MonAzPs for a 
newly isolated fungus. It further assayed the effect of 

taurine on co-production of bioethanol and MonAzPs 
from synthetic medium (SM) and corn stover hydro-
lysates (CSH). Additionally, it also assessed the univer-
sality of the promotional effects for taurine on the two 
classic biorefinery strains. Further, deep sequencing 
assays were carried out to uncover gene transcriptional 
change in M. purpureus treated with taurine. The mor-
phology and structure of M. purpureus treated with tau-
rine were also studied using microscopic imaging assays. 
This study would offer a taurine-based efficient co-pro-
duction system for mass accumulation of the value-added 
biofuels and biochemicals from lignocellulosic biomass.

Materials and methods
Reagents
The commercial cellulase was purchased from Sigma-
Aldrich (St. Louis, MO, USA) and the filter paper 
activity was determined as the document [5]. Taurine 
(HPLC ≥ 98%) was from Yuanye Biotechnology Co., Ltd 
(Shanghai, China). Propidium iodide (PI) was purchased 
from Shanghai Macklin Biochemical Technology Co., 
Ltd. All the other analytical grade chemicals were pur-
chased from China National Pharmaceutical Group Co., 
Ltd (Sinopharm).

Strain identification and culture
M. purpureus MP2022 (CGMCC3.25392) was isolated 
from the wet rubbish soil of Yancheng Relics Park in 
Changzhou, Jiangsu province of China. PCR-sequencing 
of ITS1 (internal transcribed spacer)–5.8 S rDNA–ITS4 
region was carried out by Jiangsu Genecefe Biotechnol-
ogy Co., Ltd (Wuxi, China). MEGA (Version 6.0) soft-
ware package with neighbor-joining method was used to 
construct the phylogenetic tree.

The seed slant of M. purpureus was prepared at 30 °C 
for 4 d on potato-dextrose agar (PDA) medium con-
taining 200.0  g/L potato, 20.0  g/L glucose and 15.0  g/L 
agar. Rinsed from a seed slant with 5.0  mL liquid PDA 
medium, a 2.0-mL seed slant cultures (approximately 
4.0 ×  l06 spores/mL) was cultured at 30  °C for 1 d in 
50  mL seed activated medium containing 20.0  g/L glu-
cose, 3.0 g/L peptone, 4.0 g/L yeast, 20.0 g/L malt, 2.0 g/L 
 KH2PO4, 2.0  g/L  NaNO3 and 1.0  g/L  MgSO4·7H2O in 
250-mL Erlenmeyer flask with slight modification [27]. 
A 5.0  mL activated cultures was further inoculated in 
50 mL seed medium at 30 °C and 200 rpm for 1 d [27]. A 
5.0 mL seed cultures was inoculated in 50 mL fermenta-
tion medium at 25 °C and 150 rpm for 4 d after pre-cul-
tured at 30 °C and 150 rpm for 2 d [27]. Sampling was at 1 
d interval. Taurine with the final concentration of 2.0 g/L, 
4.0  g/L, 6.0  g/L, 8.0  g/L and 10.0  g/L was separately 
amended in fermentation medium sterilized at 121  °C 
for 15 min, and no taurine was added for the control. For 
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lignocellulosic biomass fermentation, a 5.0-mL seed cul-
ture was inoculated in the two following media: (1) CSH 
system was amended with 4.0  g/L taurine, and no tau-
rine was added for the control; and (2) CSH system was 
simultaneously amended with 4.0  g/L taurine and the 
fermentation medium nutrients other than glucose, and 
no taurine was added for the control. For the assays of de 
novo RNA-Seq and microscopic assays, the fresh myce-
lia of M. purpureus treated with 4.0  g/L taurine in fer-
mentation medium for 1 d were harvested from a 50 mL 
fermentation medium, and no taurine was added for the 
control. All assays were carried out in triplicate.

The ethanologenic bacterium Z. mobilis ZM4 (ATCC 
31821) was cultured in RM (Rich Medium) medium 
[5]. A 10 mL RM culture was inoculated in 100 mL RM 
medium amended with the final concentration of 2.0, 4.0, 
6.0 and 8.0  g/L taurine in 250-mL Erlenmeyer flask at 
30 °C without shaking. Sampling was at 4-h interval. All 
assays were carried out in triplicate.

The itaconic acid-producing fungus Aspergillus ter-
reus AT2022 (CGMCC3.25393) was prepared in PDA 
slant medium. Seed medium and fermentation medium 
were prepared according to the previous method with 
slight modification by replacing ammonium nitrate 
with ammonium sulfate [28]. After rinsing a slant with a 
5.0 mL liquid PDA medium, a 2.0-mL spore suspension 
(approximately 5.0 ×  l06 spores/mL) was inoculated in 
50 mL seed medium with 250-mL Erlenmeyer flasks and 
cultured at 32 °C and 180 rpm for 1 d. A 5.0-mL seed cul-
ture was cultured at 32 °C for 8 d in 50 mL fermentation 
medium amended with the final concentration of 1.4, 2.8, 
4.2 and 5.6 g/L taurine. Sampling was at 2 d interval. All 
assays were carried out in triplicate.

CSH pretreatment
Corn stover was pretreated according to the previous 
study [5]. Enzymatic saccharification assays were car-
ried out at 48  °C for 3 d. CSH contained 46.24 g/L glu-
cose, 16.53  g/L xylose, 0.12  g/L furfural, 0.83  g/L HMF, 
0.01 g/L 4-hydroxybenzaldehyde, 0.31 g/L syringaldehyde 
and 0.09 g/L vanillin.

De novo RNA‑Seq
To uncover the molecular mechanism of the promo-
tional effect of taurine on co-production of bioethanol 
and MonAzPs, de novo transcriptomic sequencing assays 
were carried out for M. purpureus by BGI Genomics 
Co., Ltd (Shenzhen, China). The total RNA was isolated 
from M. purpureus using TRlzol Reagent following the 
commercial instructions (Life technologies, California, 
USA). The differentially expressed genes (DEGs) were 
defined as the absolute value of foldchange ≥ 2.0, and 
the significantly DEGs were required to simultaneously 

meet with the absolute value of foldchange ≥ 2.0 and p_
value ≤ 0.001. The threshold of q_value of ≤ 0.05 was for 
significantly enriched analysis of GO (Gene Ontology) 
and KEGG pathway.

qRT‑PCR
It validated the data of RNA-Seq sequencing by car-
rying out quantitative real-time PCR (qRT-PCR) on 
a QuantStudio 3 Real-Time PCR System. Additional 
file 1: Table S1 lists the oligonucleotide primers synthe-
sized by GenerayBiotech Co., Ltd (Shanghai, China). 
The first strand of cDNA was synthesized using the 
cDNA synthesis kit (Torobo Co., Osaka, Japan). PCR 
amplification program was as follows: 95 °C for 1 min, 
and then 40 cycles at 95 °C for 15 s and 54 °C for 15 s, 
and 72  °C for 45  s with a SYBR Green Realtime PCR 
Master Mix (Torobo Co., Osaka, Japan). ACT  (actin) 
was used as the internal control [29].

Microscopic assays
The effect of taurine on mycelia morphology and struc-
ture for M. purpureus was assayed using scanning elec-
tron microscope (SEM) (Hitachi SU3800, Japan) and 
transmission electron microscope (TEM) (JEM1400, 
Tokyo, Japan). With the microscopic samples prepared 
according to the previous method [30], electron micro-
scopic assays were carried out by Hangzhou Yanqu 
Information Technology Co., Ltd., China. Image-pro 
Plus software was used to carry out statistical analysis 
of SEM and TEM images.

Here, it further assayed the effect of taurine on cell 
membrane permeability for M. purpureus. Harvested 
at 12,000  rpm for 5  min and washed with phosphate 
buffer (PBS), the mycelia were stained using 10 μg/mL 
PI in the dark according to the method with slight mod-
ification [31]. The stained mycelia were observed using 
Zeiss LSM710 laser confocal microscope after washed 
three times with PBS. All assays were carried out in 
triplicate.

Determination of MonAzPs
Extracted with a 70% (v/v) ethanol and fermentation 
broth (1:1) at 60  °C for 1  h, MonAzPs was determined 
according to the previous method with slight modifica-
tion [32]. In detail, optical density (OD) of MonAzPs was 
separately measured at 505 nm for red, 410 nm for yellow 
and 470  nm for orange using L6S UV–Vis spectropho-
tometer (INESA Scientific Instrument Co., Ltd, Shanghai, 
China) after filtered with 0.22 μm filters. OD units/L was 
used to indicate the content of MonAzPs.
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HPLC analysis
Glucose, xylose, ethanol, taurine, furanic aldehydes and 
phenolic aldehydes were determined following the previ-
ous methods [5].

Results
Co‑production of bioethanol and MonAzPs from M. 
purpureus
Genetic evolutionary analysis is illustrated in Additional 
file  1: Fig. S1. As the sequenced fragments of 557  bp 
ITS1 (OR681412) and 563  bp ITS4 (OR681413) were 
separately blasted in NCBI, the isolate in this study was 
separately shared 98.92% identity with M. purpureus C1, 
99.91% identity with M. purpureus KUPM5 and 98.74% 
identity with M. purpureus ZH2. It indicated that the iso-
late belonged to Monascus genus. As well documented, 
M. purpureus strains could be used to make alcoholic 
beverages and produce MonAzPs [33]. Therefore, it fur-
ther assessed co-production ability of bioethanol and 
MonAzPs for the isolate.

Here, it carried out co-production assays of bioethanol 
and MonAzPs for M. purpureus under aerobic and fac-
ultative anaerobic conditions (Fig.  1). It illustrated that 
mycelia growth with ventilated membrane was 1.31, 1.68, 
1.20, 1.14 and 1.05 times for 1, 2, 3, 4 and 5 d than that 
with rubber stopper (Fig. 1a). Glucose consumption with 
ventilated membrane was 10.90, 4.99 and 1.78 times for 
1, 2, and 3 d than that with rubber stopper (Fig. 1b). Etha-
nol concentration, ethanol productivity and ethanol yield 
for 1 d were separately augmented by 1.62, 1.62 and 1.63 
times than those of the control (Fig. 1c–e). The content of 
red, yellow and orange MonAzPs with ventilated mem-
brane were 66.12, 78.01 and 62.37 U/mL for 3 d at maxi-
mum content, and those with rubber stopper were 59.48, 
66.51 and 52.03 U/mL, respectively (Fig. 1f, g). Herein, it 
achieved better co-production ability of bioethanol and 
MonAzPs under aerobic conditions than that under fac-
ultative anaerobic conditions for M. purpureus.

Taurine promoted co‑production of bioethanol 
and MonAzPs from M. purpureus
Here, it assayed the effect of taurine on co-production 
ability of bioethanol and MonAzPs in SM with ventilated 
membrane for M. purpureus (Fig. 2). Mycelia growth for 
2.0 g/L taurine was 1.34, 1.13, 1.13 and 1.30 times for 1, 
2, 3 and 4 d than that of the control (Fig. 2a), and mycelia 
growth for 4.0 g/L taurine was 1.65, 1.35, 1.45 and 1.56 
times than that of the control. No obvious promotion of 
mycelia growth was determined for 6.0 g/L, 8.0 g/L and 
10.0  g/L taurine. Glucose consumption for 4.0  g/L tau-
rine was 2.31, 0.39 and 1.02 times for 1, 2, and 3 d than 
that of the control (Fig. 2b), however, glucose consump-
tion of 2.0 g/L taurine was 1.50 times just for 3 d. Ethanol 

concentration, ethanol productivity and ethanol yield for 
4.0  g/L taurine were separately increased by 8.59, 9.00 
and 8.76 times for 1 d than that of the control (Fig. 2c–
e). M. purpureus consumed extremely small quantities 
of taurine (Fig.  2f ). Compared with the control (52.22, 
75.54 and 55.28 U/L), just 4.0 g/L taurine contributed to 
an increase by 40.71% for red MonAzPs, 19.68% for yel-
low MonAzPs and 47.63% for orange MonAzPs for 1 d 
at maximum content (Fig. 2g–i). Herein, it certainly con-
firmed that 4.0  g/L taurine reinforced co-production of 
bioethanol and MonAzPs for M. purpureus.

It further investigated the effect of 4.0  g/L taurine on 
co-production of bioethanol and MonAzPs from CSH 
for M. purpureus (Fig.  3). Mycelia growth with taurine 
was 1.32, 2.79, 4.07 and 3.07 times for 2, 4, 6 and 8 d 
than that of the control, and mycelia growth with nutri-
ents and taurine was 2.94, 2.16, 2.53 and 1.91 times than 
that of the control (Fig.  3a). Glucose consumption with 
taurine was 1.03 and 1.08 times for 6 and 8 d than that 
of the control, and glucose consumption with nutrients 
and taurine was 2.21, 1.75 and 1.59 times for 4, 6 and 8 
d than that of the control (Fig. 3b). Xylose consumption 
with taurine was 2.64, 2.59 and 2.38 times for 4, 6 and 8 
d than that of the control, and xylose consumption with 
nutrients and taurine was 2.65 times for 4 d than that 
of the control (Fig.  3c). Ethanol concentration, ethanol 
productivity and ethanol yield with taurine at the maxi-
mum were separately enhanced by 1.56, 1.58 and 1.60 
times than those of the control (Fig. 3d–f). M. purpureus 
consumed extremely small quantities of taurine in CSH 
(Fig.  3g). Compared with the control (27.81, 36.17 and 
35.33 U/L), 4.0  g/L taurine contributed to an increase 
of 54.19% for 6 d, 55.07% for 4 d and 40.87% for 4 d at 
maximum content separately for red, yellow and orange 
MonAzPs in CSH (Fig. 3h–j). Taurine also contributed to 
another increase by 82.82% for red MonAzPs, 63.25% for 
yellow MonAzPs and 71.15% for orange MonAzPs for 4 d 
in CSH with nutrients when compared with the control 
(15.72, 25.96 and 21.77 U/L). Therefore, it illustrated that 
taurine promoted co-production of bioethanol and Mon-
AzPs from CSH for M. purpureus.

Is the promotional effect of taurine universal 
for biorefinery fermenting strains?
It also assayed the universality of the promotional effect 
of taurine for the other biorefinery strains. Compared 
with the control, 2.0, 4.0, 6.0 and 8.0  g/L taurine obvi-
ously inhibited cell growth, glucose consumption and 
bioethanol production for Z. mobilis ZM4 (Additional 
file 1: Fig. S2). 1.4, 2.8, 4.2 and 5.6 g/L taurine also sup-
pressed mycelia growth, glucose consumption, xylose 
consumption and itaconic acid accumulation for A. ter-
reus (Additional file 1: Fig. S3). Surely, almost no taurine 
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Fig. 3 The effect of taurine on bioethanol and MonAzPs fermentability in CSH for M. purpureus. a Dry weight of mycelia; b glucose consumption; 
c xylose consumption; d ethanol concentration; e ethanol productivity; f ethanol yield; g taurine concentration; h red MonAzPs content; i yellow 
MonAzPs content; j orange MonAzPs content
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was consumed by the two biorefinery fermenting strains. 
Herein, the promotional effect of taurine was not univer-
sal for all fermenting strains.

Transcriptional profiling of M. purpureus treated 
with taurine
Here, it further carried out de novo RNA-Seq to uncover 
gene transcriptional change of M. purpureus treated with 
taurine (Additional file 1: Fig. S4).

To validate the reliability of RNA-Seq sequencing 
data, it randomly selected 11 genes of central carbon 
metabolism to carry out qRT-PCR assays, such as ACO 
(aconitase), ADH (alcohol dehydrogenase), CS (cit-
rate synthase), ENO (enolase), GLK (6-phosphofruc-
tokinase), GND (6-phosphogluconate dehydrogenase), 
PEPCK (phosphoenolpyruvate carboxylase), PDH (pyru-
vate dehydrogenase), PFK (phosphofructokinase), PGM 
(phosphoglycerate mutase) and SCS (succinate-CoA 
ligase). As shown in Additional file 1: Fig. S4a, RNA-Seq 
data were approximately in accordance with qRT-PCR 
data with 0.81 of R square ranging from − 0.48 to + 0.93, 
and thus indicating that the sequencing data were reliable 
and could be used to the further study [34].

Firstly, it illustrated that the isolate shared 83.27% simi-
larity of M. purpureus in Non-Redundant (NR) Protein 
Sequence Database (Additional file  1: Fig. S4b). There-
fore, the isolate was further identified as M. purpureus 
strain.

1148 DEGs (597 up- and 551 down-regulated genes) 
and 169 significantly DEGs (124 up- and 45 down-reg-
ulated genes) were screened (Additional file 1: Fig. S4c). 
For significant DEGs, it specially included several spe-
cific DEGs involving with major facilitator superfam-
ily (MFS), fungal specific transcription factor domain 
(FSTFD), AMP-binding enzyme (ABE) and serine hydro-
lase (FSH1) (Additional file 1: Fig. S4c).

For GO analysis, molecular function was the most 
enriched (Additional file  1: Fig. S4d), followed by bio-
logical process and cellular component, and thus indicat-
ing that molecular function especially for kinase activity 
(GO:0016301) and translation elongation factor activity 
(GO:0003746) would be responsible for the promotional 

effect of taurine on co-production of bioethanol and 
MonAzPs for M. purpureus. For KEGG analysis, it 
enriched pyrimidine metabolism, purine metabolism, 
beta-alanine metabolism and glutathione metabolism 
(Additional file 1: Fig. S4e), and thus suggesting that the 
above pathways would relate with the promotional effect 
of taurine for M. purpureus.

Additional file  1: Fig. S4 presents the enriched meta-
bolic pathways of taurine in KEEG database, and pyrimi-
dine metabolism was the most enriched pathway. For M. 
purpureus, taurine was possibly catalyzed to 5-glutamyl-
taurine by gamma-glutamyltranspeptidase (EC 2.3.2.2) 
according to gene encoding information. However, the 
three GGT  genes, including TRINITY_DN619_c0_g1_
i1-C1A, TRINITY_DN619_c0_g1_i2-C1A and TRINITY_
DN619_c0_g1_i3-C1A were separately downregulated by 
0.11-, 0.05- and 0.14-fold for M. purpureus when treated 
with taurine, and the other one (TRINITY_DN9906_c0_
g1_i1-S1A) was just upregulated by 0.15-fold (Additional 
file 1: Fig. S5). The relative very low gene transcription of 
GGT  could be used to elucidate that M. purpureus con-
sumed extremely small quantities of taurine.

In conclusion, taurine contributed to gene transcrip-
tion change for M. purpureus.

Gene transcription of central carbon metabolism for M. 
purpureus treated with taurine
Here, for the enhanced sugar consumption and ethanol 
accumulation for M. purpureus treated with taurine, 
gene transcription of central carbon metabolism was 
also investigated (Additional file 1: Table S2). Four genes, 
including GLK (glucokinase), GPM (phosphoglycerate 
mutase), ENO (enolase) and ADH (alcohol dehydroge-
nase) of glycolysis, were separately upregulated by 3.47-, 
2.19-, 2.47- and 2.47-fold (Fig. 4), and thus indicating gly-
colysis pathway was partially activated by 4.0 g/L taurine. 
The enhanced gene expression of glycolysis could be used 
to partially elucidate taurine contributing to the increase 
of glucose consumption and ethanol accumulation for M. 
purpureus. For TCA (tricarboxylic acid cycle) pathway, 
just both ACO (aconitase) and SCS (succinyl-CoA syn-
thetase) were differentially upregulated by 3.49-fold and 

Fig. 4 The effect of taurine on gene transcriptional profiling of central carbon metabolism for M. purpureus. The abbreviated enzymes were 
the following: ACO (aconitase), acetyl-CoA synthetase (ACS), ADH (alcohol dehydrogenase), CS (citrate synthase), ENO (enolase), FBA (fructose 
1,6-bisphosphate aldolase), FUM (fumarase), GAP (glyceraldehyde 3-phosphate dehydrogenase), GLK (glucokinase), GND (6-phosphogluconate 
dehydrogenase), GPD (glucose-6-phosphate dehydrogenase), GPM (phosphoglycerate mutase), ICL (isocitrate lyase), IDH (isocitrate 
dehydrogenase), LDH (lactate dehydrogenase), MDH (malate dehydrogenase), MS (malate synthase), OGDH (α-oxoglutarate dehydrogenase), 
PDC (pyruvate decarboxylase), PDH (pyruvate dehydrogenase complex), PFK (phosphofructokinase), PGI (phosphoglucose isomerase), PGK 
(phosphoglycerate kinase), PGL (6-phosphogluconolactonase), PPC (phosphoenolpyruvate carboxylase), PRE (5-phosphate ribulose epimerase), 
PRI (5-phosphoribose isomerase), PYK (pyruvate kinase), SCS (succinyl-CoA synthetase), SDH (succinate dehydrogenase), TAL (transaldolase), TKT 
(transketolase), TPI (triose-phosphate isomerase), XI (xylose isomerase) and XK (xylulose kinase). FC indicated foldchange

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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differentially downregulated by 2.65-fold, respectively. 
Therefore, taurine changed gene transcriptional level of 
central carbon metabolism for M. purpureus.

Gene transcription of MonAzPs synthesis pathway for M. 
purpureus treated with taurine
According to the previously assumed framework [11], it 
investigated gene transcription of MonAzPs biosynthe-
sis pathway for M. purpureus (Additional file 1: Table S3; 
Fig. 5). The gene cluster for MonAzPs biosynthetic of the 
isolate was shared the nearest similarity with that of M. 
purpureus CGMCC 3.19586 (MK764694.1) after aligning 
the data from de novo RNA-Seq.

The enhanced enzyme‑free intermediate biosynthesis
Three substrates malonyl-CoA, acetyl-CoA and SAM 
were catalyzed by serine hydrolase to synthesize hex-
aketide intermediate 1. One serine hydrolase gene 
(TRINITY_DN2481_c0_g1_i2-C2A) was differentially 
upregulated by 4.09-fold, and the other (TRINITY_
DN4092_c0_g2_i1-S2A) was downregulated by 2.44-fold. 
For azaphilone polyketide biosynthesis, as MrPigG-type 
putative serine hydrolases, one of the non-reducing pol-
yketide synthase (nrPKS) genes (TRINITY_DN2093_c0_
g1_i1-C2A) responsible for the assembly of a hexaketide 
intermediate 1 was differentially upregulated by 4.16-
fold. The first aromatic ring of the intermediate 2 hap-
pened after an aldol cyclization mediated by a product 
template (PT) and the resulting intermediate 3 was 
from the specific NADPH-dependent reductive release 
domain of nrPKS. C-11-ketoreductase could reduce ω-1 
carbonyl to alcohol to avoid spontaneous aldol cycli-
zation of the substrate 3 and produce the first stable 
enzyme-free MonAzPs intermediate 4 [33], MrPigC 
(TRINITY_DN2796_c1_g1_i2-C2A) encoding C-11-ke-
toreductase was just significantly differentially upregu-
lated by 23.30-fold. In all, the above DEGs of enzyme-free 
intermediate biosynthesis could be used to support the 
promotional effect of taurine on MonAzPs production 
for M. purpureus.

The enhanced formation of the acylated pyran ring system
For M. purpureus, there were three genes encoding 
MrPigN (FAD-dependent monooxygenase) respon-
sible for the hydroxylation of C-4 of the intermedi-
ate 4 and the production of pyran ring. Two genes 
(TRINITY_DN3165_c0_g1_i1-S2A and TRINITY_
DN7576_c0_g1_i1-C2A) were upregulated by 2.07- and 
4.43-fold, respectively, and one (TRINITY_DN10522_c0_
g1_i1-S1A) was downregulated by 2.40-fold. Although 
FAS (fatty acid synthase) was one key gene for gene clus-
ter of aflatoxin biosynthesis, the MrPigJ (FAS subunit 
alpha) and MrPigK (FAS subunit beta) also participated 

in the production of β-keto fatty acid and the side chain 
fatty acyl moiety of MonAzPs. For MonAzPs produc-
tion, FAS could catalyze acetyl-CoA and malonyl-CoA 
to produce intermediate 6. Here, TRINITY_DN1_c0_
g3_i2-C2A (FAS subunit alpha) and TRINITY_DN1250_
c0_g1_i1-C2A (FAS subunit beta) were differentially 
upregulated by 4.20- and 4.16-fold, respectively. The gene 
(TRINITY_DN7828_c0_g1_i1-C2A) encoding MrPigD 
4-O-acyltransferase catalyzing intermediate 6 to pro-
duce intermediate 7 was upregulated by 3.99-fold. The 
two intermediates 5 and 7 were hydroxylated and syn-
thesized intermediate 8. Acyltransferase and deacetylase, 
predicted the orthologous protein relatives widespread 
for ascomycete fungi and synthesized the putative O-11 
acetyl intermediate, were related with the elimination 
of the ω-1 alcohol. TRINITY_DN1218_c0_g1_i4-C1A 
encoding MrPigM catalyzing intermediate 8 to produce 
intermediate 9 and TRINITY_DN10365_c0_g1_i1-S1A 
encoding MrPigO catalyzing intermediate 9 to produce 
intermediate 10 were upregulated by 3.25-fold and down-
regulated by 3.64-fold, respectively. TRINITY_DN9652_
c0_g2_i1-C2A was significantly differentially upregulated 
by 4.85-fold, which encodes NAD(P)H-dependent oxi-
doreductase (MPsGeE) catalyzing intermediate 10 to 
produce the resulting intermediate 11. Herein, the aug-
mented gene expression of acylated pyran ring system 
could be used to elucidate the promotional effect of tau-
rine on MonAzPs production for M. purpureus.

The enhanced MonAzPs synthesis
Knoevenagel cyclization of intermediate 12 led to the 
yellow, orange and red MonAzPs. Enoyl reductase 
(MPsGeH) catalyzed intermediate 12 to produce yellow 
pigments 13, and its encoding gene (TRINITY_DN4418_
c0_g1_i1-C2A) was upregulated by 3.42-fold. Orange 
pigments 14 could be directly synthesized using inter-
mediate 12 with FAD-dependent oxidoreductase, and the 
two encoding genes TRINITY_DN9652_c0_g1_i1-C2A 
and TRINITY_DN7801_c0_g1_i1-C2A were separately 
upregulated by 3.76- and 5.01-fold. The classical red 
pigments 15 originated from orange pigments 14 using 
endogenous amines of media (especially amino acids). 
Totally, the subsequent stage for MonAzPs synthesis was 
also enhanced at gene transcriptional level.

The enhanced transport and regulation of MonAzPs 
biosynthesis
Transport and regulation of MonAzPs biosynthesis 
were involved with transcription factor (MPsGeB and 
MPsGeI), ankyrin repeat protein (MPsGeL) and MFS 
multidrug transporter (MPsGeP). Here, it illustrated 
that TRINITY_DN9874_c0_g1_i1-C2A (MPsGeB) was 
upregulated by 2.17-fold. Among 302 MPsGeI encoding 
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Fig. 5 The effect of taurine on gene transcriptional profiling of MonAzPs biosynthesis for M. purpureus. The abbreviated enzymes were 
the following: ACP (acyl carrier protein), AT (acyl transferase), FAS (fatty acid synthase), KS (ketoacyl synthase), MT (methyltransferase), nrPKS 
(non-reducing polyketide synthase), PT (product template), release (R) and SAT (starter acyltransferase). The numbers marked red and green 
on the left of slash were separately the upregulated and downregulated genes in square brackets, and the ones on the right of slash were the total 
numbers of encoding genes. The colored red, orange and yellow rectangular indicated the three kinds of pigments, respectively. The blue Arabic 
figures indicated the order of the compounds
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genes, seven transcription factor genes including TRIN-
ITY_DN1236_c0_g1_i14-C1A, TRINITY_DN2716_
c0_g1_i12-C2A, TRINITY_DN272_c0_g1_i13-S1A, 
TRINITY_DN272_c0_g1_i20-S1A, TRINITY_DN272_c0_
g1_i9-S1A, TRINITY_DN35_c0_g1_i7-C2A and TRIN-
ITY_DN5238_c0_g1_i1-C2A, were upregulated by 7.14, 
2.37, 20.85, 21.50, 4.69, 20.99 and 2.25-fold, respectively, 
and another six genes including TRINITY_DN2244_
c0_g1_i2-C3A, TRINITY_DN2359_c0_g1_i5-S3A, 
TRINITY_DN2468_c0_g1_i1-C2A, TRINITY_DN3550_
c0_g1_i1-S3A, TRINITY_DN3869_c0_g4_i1-S1A and 
TRINITY_DN4438_c0_g2_i1-S3A were separately down-
regulated by 2.07, 7.23, 6.41, 2.16, 4.61 and 5.91-fold. No 
DEGs were found for MPsGeL. Two genes TRINITY_
DN2118_c0_g1_i1-C2A and TRINITY_DN2118_c0_g1_
i2-C2A (MPsGeP), a hypothetical protein in NR database 
annotation and MFS multidrug transporter in pfam data-
base annotation, were upregulated by 5.53- and 4.30-
fold, respectively. In all, the increased gene expression on 

transport and regulation could also be used to support 
the promotional effect of taurine on MonAzPs produc-
tion for M. purpureus.

In conclusion, taurine contributed to the increase of 
gene transcription for MonAzPs biosynthesis to some 
extent for M. purpureus, especially with the upregulated 
genes dominant.

Microscopic assays of M. purpureus treated with taurine
Here, it also investigated mycelia morphology and struc-
ture for M. purpureus treated with taurine (Fig.  6). As 
Fig.  6 shows, the average diameter was separately 2.17 
and 3.37 μm for the control and the taurine-treated myce-
lia. Compared with the control, the mycelia treated with 
taurine were thickened and branched. Most importantly, 
the mycelia treated with taurine were also fragmented 
according to SEM images. According to the electronic 
cloud density of TEM images, cell wall of mycelia for the 
control was smooth and compact, however, the rough 

Control

SEM

Taurine-treated

TEM

Branched mycelia

Thickened mycelia

Fragmented mycelia

Smooth and compact cell wall Rough and fluffy cell wallUneven reticular cell surface

Homogeneous
concentrated cytoplasm Unhomogeneous

thin cytoplasm

Statistical analysis Diameter of mycelium (μm) Average optical density

Control 2.17 0.50 3.37 1.10

Treated with taurine 875.80 174.11 283.60 68.63

Fig. 6 SEM and TEM images of M. purpureus treated with taurine. It used Image-pro Plus software to analyze the dimeter of mycelium for SEM 
images (n = 10) and the average optical density of mycelium for TEM images (n = 5)
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fluffy cell wall of mycelia treated with taurine was of 
uneven cell surface with a reticular structure. Compared 
with mycelia of the control filled with homogeneous and 
concentrated cytoplasm, cell membrane of the taurine-
treated mycelia was filled with unhomogeneous and thin 
cytoplasm, and thus was supported by statistical analy-
sis that the average optical density was separately 875.80 
and 283.60 for the control and the taurine-treated myce-
lia (Fig.  6). Fluorescent dye penetration assays showed 
that propidium iodide (PI) occurred at the sides of cell 
membrane for M. purpureus treated with taurine (Fig. 7), 
and thus indicated that taurine changed cell membrane 
structure and increased cell membrane permeability of 
mycelia to some extent. Herein, it illustrated that taurine 
increased cell membrane permeability by changing the 
structure of cell membrane for M. purpureus.

Discussion
M. purpureus was known for MonAzPs production 
and wine starters of alcoholic beverages [33, 35, 36]. 
Here, it was for the first time the effect of taurine on 

co-production of bioethanol and MonAzPs for M. pur-
pureus was investigated.

Fermentation assays for co‑production of bioethanol 
and MonAzPs for M. purpureus
Here, more bioethanol and MonAzPs were obtained in 
SM under aerobic conditions, and thus was in accord-
ance with that M. purpureus strains usually fermented 
the substrates under aerobic conditions [37]. Although 
with good tolerance to ethanol [38], the co-production 
ability of bioethanol and MonAzPs was weakened in CSH 
than that in SM for M. purpureus in this study. It pre-
dicted that the weakening was derived from the inhibi-
tory effect of furanic aldehydes and phenolic aldehydes 
in CSH, and thus was supported by the documented 
inhibitory effect from rice husk on M. Purpureus M523 
[39]. We found that exogenous taurine increased co-pro-
duction ability of bioethanol and MonAzPs in CSH, and 
thus was predicted that taurine might endow M. pur-
pureus with the potential of stress tolerance against the 
inhibitors the same with the enhanced effect of taurine 

DIC PI     Merge
Control

Taurine-treated

Fig. 7 Cell membrane permeability of mycelium for M. purpureus treated with taurine. Differential interference contrast (DIC) and propidium iodide 
(PI) were separately for bright field channel and UV channel, and merge indicated both bright light channel and UV channel. Scale bars indicated 
20 μm
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on Trifolium alexandrinum and pea (Pisum sativum L.) 
[40, 41]. Furthermore, the isolated M. purpureus could 
utilize xylose from CSH to co-produce bioethanol and 
MonAzPs (Fig.  3b, c), and thus was in accordance with 
the ability of filamentous fungi to utilize xylose from the 
hydrolysis of lignocellulosic biomass to produce ethanol 
and other biochemicals [42].

Gene transcription for M. purpureus treated with taurine
De novo RNA-Seq assays uncovered a series of key genes 
for M. purpureus treated with taurine. (1) For DEGs, the 
enhanced effect of product accumulation for MFS, tran-
scription factor and FSH1 had been proofed for Monas-
cus strains [16, 43, 44]. The enriched kinase activity was 
supported by cyclic AMP (cAMP)-protein kinase A 
(PKA) signaling pathway in GO analysis for MonAzPs 
production of M. purpureus [45]. Therefore, the DEGs 
and the significant DEGs in response to taurine would 
be the potential synthetic biology tools to enhance co-
production of bioethanol and MonAzPs for M. purpureus 
[42]. (2) For central carbon metabolism, the enhanced 
gene transcription, such as GLK, GPM, ENO and ADH 
of glycolysis, could be used to explain the elevated glu-
cose consumption in Figs.  2b and 3b. Additionally, de 
novo RNA-Seq provided the gene transcriptional clue 
for xylose isomerase (XI) and xylulose kinase (XK) for 
xylose utilization in Fig.  3c for M. purpureus, and the 
xylose metabolism pathway was the same with oleagi-
nous fungus Mucor circinelloides [46]. (3) For MonAzPs 
biosynthesis, among 15 steps of biocatalytic reactions 
shown in Fig. 5, 15 DEGs were screened, such as serine 
hydrolases (2), C-11-ketoreductase (1), FAD-dependent 
monooxygenase (4), 4-O-acyltransferase (1), deacety-
lase (1), NAD(P)H-dependent oxidoredutase (1), FAD-
dependent oxidoredutase (2), enoyl reductase (1) and 
FAS subunit (2). The change of gene transcription for 
MonAzPs biosynthesis was in response to taurine for 
M. purpureus. Of course, for azaphilone polyketide bio-
synthesis, although the deficiency of serine hydrolase 
encoding genes severely reduced MonAzPs formation, 
the role of the MrPigG-type putative serine hydrolases 
was controversial [44, 47]. Here, the differential expres-
sion of serine hydrolase genes was in response to taurine. 
(4) For taurine utilization, it was thought that the isolated 
M. purpureus consumed extremely small quantities of 
taurine. The low gene expression level could be used to 
elucidate the phenomenon of extremely small quantities 
of taurine consumption for M. purpureus (Figs.  2d and 
3e). After all, taurine is a micronutrient. Here, taurine 
concentration was determined using HPLC and repre-
sented as gram per liter, while it found nano-gram per 
microliter taurine was for the serum of Mus musculus 
and Macaca mulatta and micromole per liter taurine was 

for the serum of Homo sapiens [48]. Therefore, methods 
to detect lower concentration of taurine should be used 
to assess its utilization.

Morphology and structure of mycelia for M. purpureus 
treated with taurine
(1) For morphology of mycelia, exogenous taurine 
brought about the fragmented, thickened and branched 
mycelia for M. purpureus, and thus indicating that tau-
rine facilitated mycelia growth which was in accordance 
with the increased dry weight of mycelia in Figs. 1a, 2a, 
3a; (2) for structure of mycelia, the rough fluffy cell wall 
suggested an increase of cell surface area by modification 
of taurine, and thus was in accordance with the effect of 
nonionic surfactant on M. anka [49]. The increased cell 
surface area would provide the robust assimilation abil-
ity of nutrients (sugars) for M. purpureus, and thus sup-
ported the enhanced glucose and xylose consumption in 
fermentation assays (Figs. 1b, 2b, 3b, c). For structure of 
mycelia, taurine increased cell membrane permeability 
for M. purpureus, and thus indicated the change of cell 
membrane structure. The enhanced cell membrane per-
meability would facilitate the delivery of intracellular 
metabolites (ethanol and MonAzPs) to the extracellular 
broth and extracellular substrates (glucose and xylose) to 
the intracellular, and thus was supported by the elevated 
effect of nonionic surfactant on M. anka [50, 51]. The 
enhanced cell membrane permeability could also be used 
to elucidate the facilitated sugar consumption and etha-
nol and MonAzPs accumulation; and (3) for the effect of 
concentration of taurine on morphology and structure 
of mycelia, 4.0  g/L taurine was the optimal alternative 
for co-production of bioethanol and MonAzPs. Here, it 
was predicted 4.0 g/L taurine as a threshold to increase 
cell membrane permeability by changing cell membrane 
structure.

The relationship between gene transcription and cell 
membrane permeability
This study also tried to establish the relationship between 
169 significantly DEGs and cell membrane permeability 
(Additional file  1: Table  S4). ABC transporter (TRIN-
ITY_DN2401_c0_g2_i2-S3A), efflux pumps expressed 
in cell membrane, upregulated by 7.25-fold for M. pur-
pureus treated with taurine, was predicted tightly asso-
ciated with cell membrane permeability, and thus was 
supported by the usefulness of ABC transporter in 
terms of membrane permeability [52, 53]. Interestingly, 
cytochrome P450 (TRINITY_DN8651_c0_g1_i1-C2A), 
upregulated by 2.09-fold for M. purpureus, might regu-
late membrane permeability, and thus corresponded with 
the effect on plasma membrane permeability of metal ion 
[54]. Major facilitator superfamily (MFS) transporter was 
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also connected with permeability [55]. In our study, eight 
MFS encoding genes including TRINITY_DN326_c0_
g1_i1-C2A, TRINITY_DN679_c0_g1_i1-C2A, TRINITY_
DN679_c0_g1_i2-C2A, TRINITY_DN679_c0_g1_i3-C2A, 
TRINITY_DN679_c0_g1_i4-C2A, TRINITY_DN679_c0_
g1_i7-C2A, TRINITY_DN326_c0_g1_i5-C2A and TRIN-
ITY_DN326_c0_g1_i4-C2A were upregulated 4.72, 7.96, 
3.64, 3.77, 21.12, 22.02, 7.17 and 21.24-fold, respectively. 
The other three MFS genes such as TRINITY_DN2036_
c0_g1_i1-S2A, TRINITY_DN1569_c0_g1_i4-C2A and 
TRINITY_DN2036_c0_g1_i5-S2A were separately down-
regulated by 4.60, 2.21 and 4.70-fold. Therefore, we spec-
ulated that MFS might be responsible for the enhanced 
cell membrane permeability for M. purpureus treated 
with taurine.

In conclusion, taurine reinforced co-production of 
bioethanol and MonAzPs for M. purpureus. This work 
would provide a taurine-based activator to optimize fer-
mentation process for mass accumulation of value-added 
biofuels from lignocellulosic biomass.

Conclusions
This work presented a novel efficient taurine-based co-
production system of bioethanol and MonAzPs from 
CSH for M. purpureus that consumed extremely small 
quantities of taurine. Exogenous taurine contributed to 
the improved gene transcriptional level of glycolysis and 
MonAzPs biosynthesis and cell membrane permeability 
through changing cell membrane structure of M. pur-
pureus. To our knowledge, this is the first report for tau-
rine-based co-production of bioethanol and MonAzPs 
from CSH for M. purpureus.
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